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Abstract - In this part the conception and realization of a computer code for experimental data processing to 
estimate the thermal and radiative properties of thermal-insulating materials are given. The main purpose of this 
study was: to confirm operability and effectiveness of the methods developed and the corresponded software for 
determining the thermal properties of modern structural and thermal-insulating materials, as temperature-
dependent. The most promising direction in further development of methods for non-destructive composite 
materials using the procedure of inverse problems is the simultaneous determination of a combination of their 
thermal and radiation properties. The general method of iterative regularization is concerned with application to 
the estimation of material properties (as example: thermal conductivity λ(T), heat capacity C(T) and emissivity 
( )Tε ). Such problems are of great practical importance in the study of material properties used as non-

destructive surface coating in objects of space engineering, power engineering, etc. 
 
1. INTRODUCTION 
In determining the thermal characteristics of modern structural and thermal-insulating materials, as temperature-
dependent, the most effective methods are based on solving coefficient inverse heat conduction problems [1-2]. 
The initial data for such problems are based on the results of measurements and include boundary conditions (of 
the first or second kind) and temperature-time measurements at several internal points of the specimen. The 
types of boundary condition and the number of points of temperature measurement should meet the conditions 
of uniqueness of the inverse problem solution under analysis [3]. The conditions of uniqueness usually define 
the minimum number of measurements needed in one experiment. As an example: at the simultaneous 
determining of the dependencies of thermal conductivity and volumetric heat capacity on temperature, at least at 
one boundary, it is necessary to measure the non-zero heat flux density entering a specimen and make transient 
temperature measurements at not less than two internal points. Boundary conditions of the first kind, or a 
condition of heat insulation on both boundaries, can be assigned, but in this case a specimen should be multi-
layered and contain one layer of the material with known thermal characteristics and the number of temperature 
measurement points in the material layer under study should be not less than two. 

The procedure of inverse problems is a simultaneous determination of a combination of thermal and 
radiation characteristics of the material (thermal conductivity ( )Tλ , heat capacity ( )TC  and emissivity ( )Tε ) 
[3-7]. The experimental equipment [8] and the method described below could be applied for the determination 
of three characteristics of the material; the availability of two specimens of the material allows us to provide 
uniqueness of the solution. 

In designing new thermal-insulating materials, quite a number of comparative heat tests are carried out, the 
purpose of which is clear from the analysis of the thermal properties of materials in different heating conditions 
corresponding to service conditions. The experimental specimens for such tests are manufactured in the form of 
a flat plate of the material analyzed. Owing to the structural version and homogeneous surface heating in 
specimens, a one-dimensional heat transfer process is realized. In the tests, as a rule, a one-sided heating of 
specimens is run. To control the assigned heating condition, the temperature of the external heated surface is 
measured and to estimate the thermal properties of the material in the study, the temperature at two internal 
points of the specimens and on the internal surface are measured (the temperature of the external surface is also 
used). In addition, the heat flux density is assumed to be known for the warm-up of a specimen. Realization of 
this condition is possible through experimental means. The internal surface temperature is used as a boundary 
condition. In practice it is difficult to realize a uniform initial temperature distribution in specimens, hence the 
initial temperature distribution is approximated through recorded data at zero time.  
 

2. INVERSE PROBLEM ALGORITHM USED IN COMPUTER CODE  
The direct problems for the considered case is given by: 
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In the model (1)-(4), the relations , ( )TC ( )Tλ and ( )Tε  are unknown. For the additional information 
necessary to solve an inverse problem, the results of temperature measurements inside a specimen are assigned, 
namely 
 ( ) ( ) M1,=m    fxT mm ,,exp ττ =  (5)  

In the inverse problem (1)-(5) it is necessary first of all to indicate a domain of defining the unknown 
functions as a temperature range [ ], general for all experiments, at which the inverse problem analysis 
has a unique solution. For T

maxmin ,TT

min the minimum value of the initial temperature is used. Of much greater importance 
is a correct sampling of value Tmax. Proceeding from the necessity to provide uniqueness of solution, it appears 
possible to sample for Tmax the maximum temperature value gained on the control thermocouple positioned on 
the heated surface. Suppose then that the unknown characteristics are given in their parametric form. With this 
purpose three uniform difference grids with the number of nodes Ni, i=1,2,3 are introduced in the interval 
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degree relative to the nodes . When solving practical problems, B-splines are used with so-
called "natural" boundary conditions: 
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where u is the desired function. 
Then, in the case of cubic B-splines (j-1=3), the unknown function is presented as follows: 
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This property makes the computational algorithm simpler. 
Let us introduce in the interval [  three uniform difference grids with the number of nodes N]maxmin ,TT i, 

i=1,2,3, namely 
 ( ){ } 31   , 1 ,1min , i=,N  kTkTT iki =∆−+==ω  (11)  
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We now approximate the unknown functions on grids (6) using cubic B-splines as follows: 
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where , k=1,NkC 1,   λ k ,  k=1,N2, ,  kε ,  k=1,N3 are parameters. As a result of the approximation, the inverse 

problem is reduced to a search for the vector of unknown parameters { }kpp = , k=1,Np , which has dimension   
Np = N1+N2+N3 . Write down a mean-square error of the design and experimental temperature values at points 
of thermal sensors positioning, namely 
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where ( τ,mxT is determined from the solution of the boundary-value problem (1)-(5) using the approximations 
(12). It is assumed that the conditions of uniqueness of the inverse problem solving are satisfied. 

Proceeding from the principle of iterative regularization, the unknown vector p  can be determined through 
the minimization of the functional (13) by gradient methods of the first-order prior to the fulfilment of the 
condition: 
 ( ) fpJ δ≤     (14)  
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To construct an iterative algorithm of the inverse problem, the solution of a conjugate gradient method was 

used. A successive approximation process is constructed as follows: 
(i) a-priori an initial approximation of the unknown parameter vector 0p  is set, and 
(ii) a value of the unknown vector at the next iteration is calculated as follows: 
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An analytical form for the minimized functional gradient is given by 
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where ( )τψ ,x  is the solution of a boundary-value problem adjoint to a linearized form of the initial problem (1)-
(4):  
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To calculate the descent step a linear estimation is used: 
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3. COMPUTER CODE 
The authors started a prototype of the computer code, intended for the development of algorithms for the 
estimating of material thermal properties, in 1990. Developed software is the set of problem-oriented blocks for 
numerical solving various inverse problems in the processing of transient thermal experiments, data processing 
and of optimal experiment design with respect to different optimality criterion. The software consists of 
individual modules and has multi-level structure. Software is made of the segments “Task”, “Data”, “Core”, 
“Model coefficient”, “Logistics” (Figure 1): 
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Figure 1. Software structure. 

 
The presented structure is stipulated by the need to adjust the software to new problems to be solved and the role 
by each segment in the iterative procedure. The “Task” segment is intended for the following operations: to 
allocate required resources, to configure the software version to be used, namely to define the titles of 
subprograms, shaping the mathematical model and dimensions of the used arrays (mesh nodes, approximation 
parameters). The “Task” segment is made of a set of commands and basis programs, which define the model to 
be used, allocates resources and controls the operations by the “Model coefficient” segment. The “Data” 
segment modules are the sets of the input data to be used by other segments. The structure of input data is a very 
important question for users, and data input module generates a data description table, their basis characteristics 
as well as tables of connection with heat transfer mathematical model (Figure 2). Entire information is piled 
together in a singe data array. Individual modules are united into so-called segments. The “Core” segment does 
not depend on the considered problem, that is achieved through the special procedure of input data processing 
and the system of interconnections among individual program modules. In this segment are realized the 
algorithms: optimization, one-dimensional and multi-dimensional search, statistic identification, etc. A particular 
problem is defined at the computation of the model coefficients. Programs, used for coefficient computing, make 
up the segment “Model coefficients”. Modules, realizing conventional mathematical methods to be used by all 
programs, are united into the segment “Logistics”. Software structure is an open-end one and can be enhanced or 
modified if needed. Software is realized into FORTRAN and C++ programming language. 
The segment “Logistics” includes the following functions: 

- Linear/spline interpolation;  
- Approximation/basis functions  (B-splines with free and natural boundary conditions, polynoms); 
- Calculation of matrix eigenvalues and eigenvectors; 
- Various simulators of random values; 
- Solving systems of linear algebraic equations and non-linear algebraic equations. 

Programs of the “Model Coefficients” segment defined by the type of heat conduction equation: 
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- Programs to compute coefficients of heat transfer direct problem; 
- Programs to compute coefficients of the adjoint problem, 
- Programs to compute coefficients of the problem of temperature variations. 

The “Core” programs are universal for the class of problem, considered here. The change of heat transfer 
mathematical model demands the modifications of the problems making up the second “Model Coefficients” 
segment (all these programs make up less then 2% of total software). 
This approach reduces software maintenance costs and simplifies its modification, even general ones. 
 

 
 

Figure 2. Data input: right boundary conditions (heat flux as a function of time: 1- the first experiment, 2 - the 
second experiment). 

 
4. NUMERICAL ANALYSIS OF THE ALGORITHM AND COMPUTER CODE EFFECTIVENESS 
Effective application of heat transfer research techniques based on inverse problem solutions demands accurate 
development of computing algorithms and the selection of the number of simultaneously processed specimens 
and that of the thermal sensors. At this stage of research the most effective method is a computational 
experiment. Assuming that all coefficients of the mathematical model are known, we can solve a direct heat 
transfer problem in the specimen. Then, using the temperature field, this obtained at the assumed points of 
thermal sensors setting, we form the additional information necessary for inverse problem solving and, 
afterwards, we solve an inverse problem of heat transfer [2]. Such an approach provides a means of analyzing 
the error effect on the results of inverse problem solving.  

The domains of function definition in the case under consideration for all unknown characteristics are 
identical and equal to the interval: [293 K, 1150 K]. Figure 2 illustrates the external heat fluxes for two 
experiments processed simultaneously. Time of each experiment is 300 s. The internal boundaries of specimens 
were considered as thermally insulated. The exact values of the recovered functions are given in Figure 3. The 
number of experiments needed for the recovery of the above pointed heat transfer characteristics surface is two. 
Hence, for numerical studies we considered the complexity of unsteady thermal experiments taken two at a time 
(N=2). By mathematical modeling we considered specimens of 0.015 m thickness. Thermocouples were 
assumed to be installed at points with the coordinates: 

1st specimen .015.0,0102.0,0075.0 321 mXmXmX ===  
2nd specimen  .015.0,01365.0,01265.0 321 mXmXmX ===  

The inverse problem solving error in the given study is defined as 
 ( ) ( ) ( )

22 LL
TCTCTCC −=δ  (34)  
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where εελλ ,,,,,CC are recovered and accurate values of functions in the corresponding domains of definition. 
Let us consider the effect of the number of approximation parameters on the accuracy of the solution 

obtained for different error levels in input temperature δ , and compare different approximations. Figure 3 
presents the results of the unknown function approximation by various numbers of approximation functions. As 
is seen, when the number of parameters is three for ( )TC  and ( )Tε  and five for ( )Tλ , the recovered 
characteristics are more close to a prescribed value. The residual functional values in the iterative procedure, 
obtained using the different numbers of approximation parameters, are presented in Figure 4. These results 
allow confirmation of the following formalized approach to the choosing of the unknown parameters number: 
the unknown function approximation should be carried out by the minimum number of terms with which the 
residual level  is reached.  2

fδ

Next, we analyze the influence of errors in ( )τ2q  and ( )τmf  on the inverse problem solution. We modeled 
two types of errors: for ( )τmf  by a normal distribution, for ( )τ2q  at a positive bias, where the level of relative 
maximum error rate is %5=δ  . Random errors in the input data under modeling are formed by the formula: 

 ( ) ( ) ( )( ) Mmff mm ,1,1 =+= τδϖττ  (37)  

where ( )τnf  is the «exact» reading of the thermal sensor obtained from the direct problem solution, ϖ  is the 
random value distributed by normal distribution with a variance equal to 1 and a mean value 0, ( )τδ  is the 
maximum-possible accidental error. So it is shown in Figure 5 how deviation ( )τmf  behaves. The above results 
testify a sufficiently high computing stability of the suggested algorithm towards random errors occurring in 
solving coefficient inverse problems. For modeling the effect we used the expression 
 ( ) ( )( )δττ += 122 qq  (38)  
Figure 6 shows the results of the unknown functions determination at the bias of the heat flux delivered from the 
heated side. The results presented show a very weak effect of heat flux measurement errors on the output of 
inverse problem solving. 

To analyze the effect of the thermal sensor position on the accuracy of the inverse problem running solution 
we varied the coordinates of their position as follows: 

( )XXX δ+= 111  
Also we assumed the temperature measurements on the external surface of the specimens. The minimum 

distance between thermal sensors was sampled from considerations of exclusion of their interference: 

,10
,1

dX
XXX

m

mmm

≥∆
−=∆ −  

where  is the thermal element hypothetic diameter (is taken equal to 0,0001 m). In the case under study, we 
assumed that 

d
05.0=Xδ . Computations for three thermal sensors in each experiment have been made at 

coordinate displacements of the left thermal sensor setting. 
Figure 7 demonstrates the recovered functions of heat capacity, thermal conductivity and emissivity as a 

result of mathematical modeling for several possible displacements of the position of the thermal sensors. All 
computations have been carried out for initial data prescribed without error ( )0.0=Xδ . 

The research performed shows that for the consideration under study, the accuracy of the solution being 
obtained becomes lower when the thermal sensors are shifted towards the heated surface, while the removal of 
additional thermal sensors from the heated surface is of lesser influence on the errors in their setting. However 
the above presented results cannot claim for completeness and fullness but only validate a need of a preliminary 
optimal experiment design in the case of defining a complex of insulation characteristics. 

 
 

4. CONCLUSION 
In this paper an algorithm and computer code are presented which were developed to process the data of 

unsteady-state thermal experiments. The algorithm is suggested for determining unknown thermal and radiative 
properties as a solution of the nonlinear inverse heat conduction problem in an extreme formulation. The 
computer code provides the using of the algorithm suggested for solving the applied problems [5]. 

The following main factors have an influence on the accuracy of the inverse heat conduction problem (in 
sequence of significance): the errors in coordinates of thermosensor positions; the errors in values of different 
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characteristics; the errors in estimating the residual level. It was shown that in the cases considered the accuracy 
of the solution of the inverse problem is compatible with the errors of the simulated "experimental 
measurements". 

 
 

 
 

 

 
 

 

 
 

 

Figure 3. Results of reconstruction (measured 
temperature with error  %10=δ  relative to a current 
value): 1, 2, 3, 4, 5 – estimations of ( ) ( ) ( )TTTC ελ ,,  

(number of parameters being 1, 2. 3, 5, 7); 
6 – exact values. 

Figure 5. Results of ( ) ( ) ( )TTTC ελ ,,  reconstruction: 
1, 2 – measured temperature with error %10%,5=δ  
distributed by normal distribution, when error level is 
considered with respect to current value of disturbed 

function; 3 – exact values. 
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Figure 4. The influence of the numbers of approximation parameters on the errors in the inverse problem 
solution (the residual functional value [ ] as an iteration number): 1 – number of parameters is one for 

, 
sec2K

( )TC ( )Tλ  and ( )Tε  (constants), 2 – number of parameters is two for ( )TC , ( )Tλ  and ( )Tε  (linear 
functions), 3 – number of parameters is three for ( )TC  and ( )Tε  and five for ( )Tλ , 4 – number of parameters is 

five for , ( )TC ( )Tλ  and ( )Tε , 5 – number of parameters is seven for ( )TC , ( )Tλ  and ( )Tε . 
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Figure 6. Results of ( ) ( ) ( )TTTC ελ ,,  reconstruction: 
1, 2 – bias %10%,10 +−=δ  at boundary condition 
(heat flux from the heated side); 3 – exact values. 

Figure 7. Results of ( ) ( ) ( )TTTC ελ ,,  reconstruction 
with thermocouple displacements: 

1 - 0=Xδ ; 2 - 05.0−=Xδ ; 3 - 05.0=Xδ ; 
4 – exact values. 
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